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Infinite-Order Phase Transition 
in a Classical Spin System 
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For an exactly soluble classical spin model with tong-range inhomogeneous 
coupling it is proved that in the absence of external magnetic field the free 
energy is a C ~~ function of the temperature at the critical point. 
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1. I N T R O D U C T I O N  

Recently, various one-dimensional models with inhomogeneous interactaon 
have been introduced as simple examples of a phase transition. Such results 
have been mainly concerned with nearest neighbor potentials and unboun- 
ded coupling. (~-4~ However, inhomogeneous spin systems also provide the 
means of studying the influence of very long-range potentials on the critical 
behavior. 

The object of this paper is an exactly soluble classical spin model with 
an inhomogeneous coupling decreasing roughly as ]i-j1-1 (such a decay 
would correspond to the boundary case c = 2 of the hierarchical model~5)). 
This interaction results in a rather unusual critical behavior. We consider 
a system of classical spins {ai}i~ ~, ai = +l ,  in the presence of a magnetic 
field h >i 0. The Hamiltonian is defined by 

l<~i<~j<~n I<~i<~n 
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This result can be obtained by standard methods; we give an intuitive 
picture and only sketch the proof. Consider first the parametric form of 
(1.10a): 

(2.1) 
k s = Y~ - X~ 

The phase portrait of Eq.(2.1) is given in Fig. 1. Taking w~(.)= 
t anh- l [y r  in Eq. (2.1), one obtains 

#~ + ~ +/? tanh w~ = 0 (2.2) 

describing the damped motion of the classical particle in the potential well 
V~(w) =/~ log cosh w. The function y~ corresponds to the solution of (2.2) 
with wp(-  oe)= oe and ~ ( -  oe)= -/? (which is the terminal velocity in 
(2.2)). The point w = 0 is a stable equilibrium point. In a neighborhood of 
the origin, log cosh w ~ w2/2 and Eq. (2.2) approaches the equation of the 
damped oscillator. The latter is over (under)damped for/? </?c(/? >/?~) and 
critically damped for 

/?c = 1/4 

Briefly, a proof is obtained as follows. 

1. First, it is shown in the usual way that (1, 1) is a saddle point of 
Eq. (2.1) for all /?E N+ while (0, 0) is a stable node for /?e(0,/?c] and a 
stable focus for/? > tic. As is known in the two-dimensional autonomous 
case, the trajectories approach a stable node along one of the critical direc- 
tions {which are given by y = x/2.  [1 _+ ( t -  4/?) 1/2] in our case}. 

2. In a neighborhood in [ - 1 ,  1] 2 of (1, 1), there exists a unique 
solution of (2.1) tangent to the unstable direction 

y =  ( x -  1)(1 +2/?)+ 1 (2.3) 

'y. 

Fig. 1. (a) Phase portrait of Eq. (2.1) for fi ~< tic. (b) Phase portrait of Eq, (2.1) for fi > tic. 
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This follows from the behavior of trajectories near a saddle point (6~ (the 
existence of such a solution also follows from the proof of Lemma 3.1 given 
in the Appendix). 

The second trajectory approaching (1, 1) is a singular one, with 
Y#(t)= 1; this trajectory gives the stable direction at (1, 1). 

3. The total energy of the particle in (2.2) gives a Lyapunov function 
for Eq. (2.1). The Lyapunov function is used to prove that the solution 
obtained in step 2 extends to the whole real axis and also that, for this 
solution, 

(X#(t), Y # ( t ) ) ~ ( - 1 ,  1) 2 for t ~ N  (2.4) 

(X#(t), Y#(t)) ~ (0, 0) for t ~ oo (2.5) 

To summarize these intermediate results, we have the following. 

l . e m m a  2.2. For each /~s N+ the system (2.1) has a unique solu- 
tion (X#(.), Y#(.)): N ~ ( - 1 ,  1) 2 for which the path is tangent to the line 
(2.3) at x = y = 1. 

Computing the field direction across the line y = x, one can show by 
the previous lemma that 

X#(t) > Y#(t) for t ~ ( -  ~ ,  t#) (2.6) 

where t#=-inf{t: X#( t )=0}  for/~>/~c and t # - - ~  for #~</~.. The function 
y# is now defined by its graph 

y# = {(X#(t), Y#(t)): t e ( -  oo, t#) } (2.7) 

where .3 denotes the closure of the set A. 
It is easy to see that this is a correct definition and that y~ satisfies 

(1.10a)-(1.10c). In view of step 2, y# is the only solution of (1.10a)-(1.10c); 
the regularity of the obtained y# is obvious. | 

k e m m a  2.3. (i) y ~ ( x ) > 0 f o r x e ( 0 , 1 ) a n d / 3 ~  +. Also, 

y /~ (x )>x /2 . [ l+(1-4#)  ~/2] for (x,/~)a(0, 1)• (2.8) 

y # ( 0 ) = 0  for /~e(0, flc] and y#(0) a ( - 1 ,  0) for # > # c  (2.9) 

(ii) y~ extends to a C[0, 1] map. We havey~(1)=  1 +2[ / fo r  # a  a + ;  

y '#(O)=l/Z.[ l+(1-4f l )  '/2] for fl~(0,/~f] 

y}(O) = 0 for /9 > / ~  

(iii) y# converges uniformly, as //--* O, to the function yo(X)= x, the 
singular solution for/~ = 0 of the equation y'#(y#-x) = f ix(1-  y~). 
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If (2.17) holds, then, taking ~.(k)=f~(k)/~n(k), we get 

= /~ k ~b.+l(k) ~ b . ( k + l ) e x p ( - ~ - - ~ )  .JT~(k+l) 
L+,(k)  

/~ k + ~b~(k-1)exp ( n - ~ )  .)7~(k- 1) 
L+~(k) 

from which it follows inductively that 

const.exp - e <ff~+~(k)<const'-exp , keS.+~, n e N  
j = l  \ j = l  

implying (2.14). 

Remark. The second factor in (2.16) [which obviously does not con- 
tribute to (2.14)] was added in order to allow the inductive approach to 
the problem. It originates in the fact that, for fl ~> fi~, the limit probability 
distribution is actually a superposition of two states, corresponding to 
opposite values of the magnetization. 

For the proof of (2.17) it suffices to consider that n is large enough 
and k >~ 0. Define for 0 ~< k ~< n - 1 

k ; f l ) _  (n + 1) Go ( n _ ~ ;  fi) ] X~+ ,(k)=exp I T fi-~-~ + nGo (lk + ll 

Also, let Zn+ i( n + 1) be given by the above expression and Z++ ~(n + 1 ) =  O. 

1. First we show that, for some {a~'}, ~ ~, with e" ~ 0 as n -~ ~ ,  

{log[z++~(k)+x.+l(k)]l<e " f o r 0 < k e S . + l ,  n e N  

For O<k<<.n- 1, 
k k 

Z~+ l(k ) = exp [-T- ~ -ff-~ + (~ -~  +- l ) G'o ( n - ~  ; fi ) 

-Go  n-~-~;fl +2n ~ _ + 1  G~(~_+;fi) 

with 
k - 1  k + l )  

It is easy to see that G~(x; B)<~ fl for x s (0, 1). Then, by (1.9a) [observing 
also that Z~++~(n + 1) + Z~-+~(n + 1)= 1], 

logD:++l(k)+zn+~(k)]<~2Bn ~ for O<keS,,+l 
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For a lower bound, let A(fl) be such that for all x e ( 0 , 1 ) ,  
IG;'(x;fi)l ~<A(fl ) (1-x)  1 [see (2.12)]. For O<k<~n-logn, we get 

log[z++ 1(k) + Z~+ ~(k)] ~> - c o n s t .  A(fi)/log n 

Then, for n -  log n < k < n, noting that by (2.12), G0(x; fl) is decreasing for 
x close to 1, we obtain 

log [;~++ 1(k) + 7~2+ ~(k)] 

~> log Z~-+ l(k) 

>i f l (n- logn) / (n+l)-Go((n- logn) / (n+l); f l )oO as n ~ o o  

since Go(.; fl) is continuous. 

2. For k = 0 ,  

T,+ 1(0) = {exp[G;(0; fl) - Go(0; fl)] 

[' ] + exp[ - G;(0; fl) - Go(0; fl)] } exp ~nn G6'(~; fl) 

with 

7~+~(k) - ( 1  +e ~k)-i {l q - e  -:~k Z'+l(k)e-~+ Z~+l(k)e~.} 
Z:+ ~(k) + Z~-+ 1(k) Z++ l(k) + Z~-+ ~(k) 

(2.18) 
Note that 

X~-+ ~(k) exp( T e) -= X ~  ~ (k) + )~+ l(k) o 

o [ ' ] Zn+l (k)=exp  T2fl k'-~+ 2~Go(~,fl) n+l- 
~(knl k+l)' n , ~ ( 0 , ~ )  

(2.19) 

Regarding the expression obtained after the substitution of (2.19) into 
(2.18) as a weighted mean of)c~ one obtains an estimation for e'n, in this 
region, of the form const(fl)/log n. 

Finally, for k~  (log n, n + 1] it follows directly from (2.18) that 

I log { [Z+~(k)  + Z~+~ (k)] -1 T, +1 (k)}l < const �9 n ~ 

On account of step 1 above, this completes the proof of (i). 

where ~e (0, l/n); (2.17) is obtained from (2.13) with e',,=const(fl)/n. For 
0 < k ~< log n, we write 
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A P P E N D I X  

Proo f  o f  L e m m a  3.1. Note first that the only problem is the 
analyticity near the singular point (1, 1). It is sufficient to prove analyticity 
on (Xo, 1) x N + for some Xo, since on (0, 1), ya(x)  < x and the solutions of 
(1.10) depend analytically on (B,x) and the initial conditions in any 
domain of regularity of the rhs of (1.10). In order to obtain the analyticity 
near the critical point, it is convenient to consider YB as a perturbation of 
its asymptotic expression for x ~ 1, which behaves analytically. With 
x~ --- Yi  t, define ~z: (0, 1) w-~ R by 

~(w)  = [ 1 -  xB(tanh w)] exp w 

By (1.10), 

(At) 

d~fl = (1 -~- fl 1 )  ~ f l  - -  (1 - t a n h  w )  e ~ - ~ e  w (A2a) 
dw f l ( 1 - ~ e  ~) 

and 

lira ~ a ( w )  = 0 (A2b) 
w ~ o O  

In view of the definition of ~ ,  it is easy to see that Eqs. (A.2a) and 
(A.2b) have a unique solution and also that the needed analyticity of y~ is 
equivalent to that of r on (Wo, oe)x ~+ for some Wo. The second term in 
the rhs of Eq. (A.2a) vanishes for w ~ oc. It is then natural to consider the 
following integral version of Eqs. (A.2a) and (A.2b): 

r = f l -  le~(t~-~ + 1) f ~  ds e -~r ~ + l) (1 - tanh s) e s - ~ ( s )  e ~ 
1 - ~ ( s )  e - S  

(A3) 

We treat (A.3) as a fixed-point problem in a suitable analytic function 
space. 

Let e > 0 ,  6E(0, 1). For e=a (e ,  6) large enough, let S~,~ be the space 
of complex analytic bounded functions on the domain D~,~ = { (w, fl) s C2: 
Re(w)>c~, Re(fl)>~}. Consider the closed ball B~={U~S~,~:  1]/11,%<6}, 
where 1]. II denotes the sup norm on D~,,. Define the nonlinear operator T 
on B~ by 

( rg)(w, fl) 

C'O+ i Ira(w) (1 -- tanh z) e ~ - g 2 ( z ,  fl) e-~ 
= fl- leW(l+fl-b dv e - ( l+f l  ~)~ 

1 - -  g ( r ,  f l )  e ~ 

(A4) 
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The above integral is absolutely convergent for g~B~ and thus, by 
Hartog's theorem, (Tg)(., .) is an analytic function in the couple (w,/~) on 
D~,~. It can be checked in a straightforward manner that, for large enough 
~, T(B6)~ B6 and also that T is a contraction on B6. 

Let then ~'~ be the unique fixed point of T in B6. It can be seen from 
( t .4)  that T leaves invariant the closed subset R6 c B6 of the functions that 
take real values for real/? and w. Thus, ~t~ e R6 and since it satisfies (A.2a) 
and (A.2b) for (real) /~>e and w>~ ,  then ~ ( w ) = ~ ( w )  for 
(w,/?)e(e,  oo)x(e,  oo). Therefore y~ is real analytic on (0 ,1)x(e ,  o o). 
Since e is arbitrary, this concludes the proof. I 

Proof of Lommo 3.2. In the following we shall use some short-hand 
notations such as y~(g) for y~o g~(g)  or y~(h) for y~(rn(fl, h)). 

The key to the approach is the use of the projective variable g = y/x 
in a kind of a-process in order to compare y~ with the solutions y~ of the 
linearized equation in a neighborhood of x = 0. The values of interest for 
g are between go = tanh/~c < inf~ > ~c gp(h = 0) and some g~ > y'~(x = 0), say 
g~ = 1/2 + 1/8. 

Define the function f~ by 

- arctan (g~ ~ 1 / 2 ) ] }  (A5) 

with co= (fl-/~c) ~/2. Consider/3 o >fl~. For (i) we prove a stronger result, 
namely: 

(i') For all g~(go, g~) and f l s ( /~ ,  rio], 

K, < Ya(g)/Ye(g) < K2 (A6) 

where K,,2 e N + are fl independent (but may depend on go, g~, or fl0). 

Proof. By (1.10) 

log[yB(1 -- Y~)- t/2] I'~{g~ =/~ +fl dTE,~(7 ) (17) 

with / ~ ( g ) = ( g - 1 / 2 ) 2 + c o  2 and E~(g)=fly~(g)[gF~(g)['~(g)] ~ [see 
(2.11)]. Noting that y~(g)< g~, the upper bound in (A.6) follows from the 
positivity of E~. For the reverse inequality, we show, using an estimation 
of Ee, that 

f f '  d7 E~(7) < const for (~,g)~(fl~,flo]X(go, g,) 

822/59/5-6-29 
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Let 
d , Fa(g) 

~(g)  = ~ l og  r~(g---)) 

Since r ~ < F a  and y~(g)<g, it follows in a direct manner that 
Et,(g) > Ee(g)/8 for (g, fl) e (0, gl) x (tic, 80]. Now, 

fgl d~ ~(~) < log[re(g, )/F~(g) ] < const 
g 

The rightmost inequality follows for fl >1 tic from the continuity of y~(gl) in 
fi and the positivity of Fr [these, in turn, result from Lemma 2.3(iv)]. 

Let h 0 -  inf{h: g~(h)= gl }; h0 > 0 (by a compactness argument). Now, 
inequality (A.6) works in terms ofy~(h) for h e [0, h0], proving (i). For the 
proof of (ii), we shall indicate the main steps, omitting the lengthy details. 

Define 

z~(h) = r(y~(h)) with r(t) = -�89 log(1 - t 2) 

z~ satisfies the more convenient equation 

dz~ = (log cosh) -1 z~ -  flh 
dh 

(A8) 

We shall use the equations in variations for z~ in order to estimate 
( Sk/~k) z~( h ), k e ~, 

d Okz~ 1 8kzz 
g i  at3 k + z ,k 

(A9) 

with 
Za,~(h) = -h 

and, for k > 1, 

8 k 1 8k 
Za, k(h) = ~ [(log cosh)-1 za(h)] ya(h) ~flk zB(h) 

The initial conditions for (A.9), (~k/oflk) z~(ho) are, by Lemma 3.1 and the 
positivity of yz(ho), real analytic functions in fle R +. More generally, let Sz 
be the solution in [0, h0] of the equation 

d -~0~= +~+ Aa with ~p(ho) = ~Oo(fi) (AIO) 
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where 4Jo(/~) is continuous in/? e [/3c, flo] and (h, f l )~  A~(h) is continuous 
on D~h --= [0, ho] x (/3~, flo]. Assume further that for some const > 0, 

IA~(h)l < const - y~(h) 

Then we have the following result. 

k e m m a  A.1. For flo close enough to /?~ we have, with a fl-inde- 
pendent constant, 

in D~h (Al l )  

Now, 

10~(/7)1 < const, co-3y~(h) 

Proof, The solution of (A.IO) is 

~ ~(h )= ~Jo(fl) exp [ -  fti~ dh' ~ ]  - f[~ dh' A~(h ') 

x exp - dh" 

f h, dh" 1 ege(h'l 1 
, yp(h") - )ge(h) dg F~(g---~ 

(A12) 

and also that 

I "h~ dh" ~ > log const 
Jh y~(h") y~(h) 

dh' A~(h') exp - dh" 1 

l 
< const, co-2y~(h) log 

y~(h) 
< const.co-3y~(h) 1 

As a consequence, for some sequences { / / ' } . ~  in (tic, flo] and {p ; , } .~  
in ~+,  

-~z~(h) <constn.co-P"yZ~(h) for (h, fl)~D~h, nEN (A13) 

Reasoning as in the proof of (i') and using the results obtained there, it can 
be verified that 
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(A.13) is proved inductively, noting that Z~,k depends only on the 
(dJ/O~J) z~ with j < < , k - 1  and using Lemma A.1 and the real analyticity of 
t-1/2 log cash t for the needed estimations. Now relation (3.6) follows in an 
obvious way. | 

Remark.  The factor co -3 in Lemma A.1 is optimal. This can be used 
to show that the derivatives in /~ of y~ and 37~ for h = ha have the same 
asymptotic behavior. 
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